

Contents
1 Introduction and Research Questions 7

1.1 Research questions . 8

2 Current research on interpretability 9

3 The interpretation of image classification with LIME 12
3.1 What is LIME? . 12
3.2 Setup and application of the model 13
3.3 Applying LIME on the classification output 15
3.4 An evaluation of the LIME image explainer 19

4 The classification of tabular data 20
4.1 Tabular data retrieval and pre-processing 20

4.1.1 The setup . 20
4.1.2 Description of the dataset 21
4.1.3 Processing the directions 24

4.2 Setup of the machine learning models 24
4.3 The application of machine learning models 26

4.3.1 The decision tree algorithm 27
4.3.2 The random forest algorithm 29
4.3.3 The logistic regression algorithm 31
4.3.4 The extreme gradient boosting algorithm 32

5 Interpretation of the output and the
application of LIME 36
5.1 Analysis of the machine learning output 36
5.2 The application and evaluation of the LIME Tabular Explainer 37
5.3 Evaluating the models on a global level 40

6 A qualitative assessment of LIME 43
6.1 The interviews . 43
6.2 Self assessment of the usability 45

6.2.1 Effectiveness . 46
6.2.2 Efficiency . 48
6.2.3 Satisfaction . 49

7 Conclusion & Future Work 51
7.1 Conclusion . 51
7.2 Future Work . 51

3

List of Figures
1 The first image example . 15
2 The image processed by the model 16
3 The top five superpixel . 17
4 Pixel with �25% weight . 17
5 The second image example . 17
6 The top five superpixel . 18
7 The second prediction . 18
8 The decision tree ROC curve 29
9 The random forest ROC curve 31
10 The logistic regression ROC curve 33
11 The XGBoost ROC curve . 35
12 Example LIME output using logistic regression 41
13 Output of the first part . 44
14 Output of the second part . 45
15 Example of a LIME output 47

4

List of Tables
1 Summary of the literature review 10
2 Classification output of the first image 14
3 Classification output of the second image 18
4 An overview of the datasets’ features 22
5 The decision tree classification report 28
6 The random forest classification report 31
7 The logistic regression classification report 32
8 The XGBoost classification report 34
9 A model comparison using conventional methods 37
10 Participants’ understanding of the LIME output 44

5

Abstract

New frameworks in the field of explainable artificial intelligence
(xAI) have lately come in the focus of interest, helping to gain insight
into the decision making process of complex algorithms, especially in
the field of machine learning. In this thesis we evaluate the Local In-
terpretable Model-Agnostic Explanations (LIME) framework and its
performance in making tabular models more interpretable. We apply
several state of the art machine learning models on a tabular dataset
and compare their performance on a local and global level, using LIME.
Additionally, we evaluate the understandability of the LIME output
and develop a user experience framework and assess LIME’s usability.
We found that the tool lacks an updated instruction on its implementa-
tion and a clear guideline on how to analyse its output, but overall, the
framework’s performance proofs satisfying, as it grants interpretabil-
ity. This theses will facilitate the future application and interpretation
of LIME and therefore help to shed more light into black box decisions.

6

1 Introduction and Research Questions
Since it was first mentioned in 1956 [1], artificial intelligence (AI), and es-
pecially its subset machine learning, has steadily made its way into various
kinds of industries and aspects of consumers’ lives, like healthcare12, trans-
portation3 and advertisement45. While machine learning applications are
getting more and more advanced, the understanding of how these models
work and how decisions are made is becoming less and less. In some appli-
cations like order systems or predictive maintenance it may not be necessary
to understand the black box decision making, as long as the models’ pre-
dictions are accurate in the majority of cases. But in circumstances where
human lives are involved, like medical diagnosis or self-driving cars, the abil-
ity to understand the decision process, is essential.

Explainable AI (xAI) [2] is a generic term used to describe the intention
to build and use models that can be interpreted and understood by its users.
One approach is to develop powerful and fully explainable models that would
make the usage of non-transparent models unnecessary, like deep k-Nearest
Neighbours [3] and Teaching Explanations for Decisions [4], another one is
to tackle the issue of post-modelling interpretability, to explain the output
of well established machine learning models, instead of replacing this models
entirely, like SHAP [5], LOCO [6] and MAPLE [7]. In this thesis we focus
on the latter approach.

In our literature review in section 2, we identify several post-modeling
interpretability frameworks. While many publications introduce new frame-
works or variations of existing ones, only little attention is given to the eval-
uation of their actual performance. The same applies to Local Interpretable
Model-Agnostic Explanations (LIME), which is the most frequently men-
tioned framework in our review. LIME is an open source tool, published by
Ribeiro et. al in 2016 [8] and is used as a benchmark in several comparisons
[9][10][11]. However, up to now no extensive evaluation has been published
about LIME’s tabular data function.

1
https://www.entrepreneur.com/article/341626

2
https://medicus.ai/de/

3
https://kodiak.ai/

4
https://instapage.com/blog/machine-learning-in-advertising

5
https://www.ezoic.com/

7

1.1 Research questions
The hypothesis that underlies this thesis is, that explainable AI can enhance
the machine learning aided decision process. Based on this we develop the
following main question, which is answered by three explicit ones:

How suitable is LIME for the interpretation of tabular models?

To answer this question, we determine the following sub-questions:

• How well does LIME make different models comparable and how
can its comparability be improved?

• How interpretable is LIME’s output and how can its interpretability
be improved?

• How is LIME’s usability and how can its usability be improved?

8

2 Current research on interpretability
In order to gain an understanding of the current state of research in the field
of interpretability, we conduct a systematic literature review. We decide to
focus exclusively on model agnostic frameworks, which are tools that they are
not specialised on one specific machine learning technique, but applicable to
several methods. To search for literature, we use the keywords model agnostic
explainability, model agnostic interpretability, machine learning interpretabil-
ity. We find 62 articles about explainable artificial intelligence, of which 37
propose new interpretability methods, evaluate them or extend existing ones.
We analyse these publications and aggregate them in Table 1, sorted by the
method they are using. We include 21 methods, of which 19 are mathemat-
ical methods and three are stand-alone tools applying several methods. We
analyse the publications for three additional features: the scope of the inter-
pretability, the type of data the method is tested with and the interpretability
evaluation used to assess or compare the method’s performance.

Scope In terms of the scope of interpretability, a framework can either be
global, meaning it makes different models comparable with each other, by
summarizing their performance in specific indicators, or on a local level, giv-
ing insight into how a classification in a a single prediction is made. The
majority of the reviewed articles focus on the local functionality. Some pro-
cess locally but can be used for a global comparison and only the activation
maximization method [12] and model distillation [13] are exclusively global.

Data Type Our analysis found that while every publication includes some
demonstration of the method using a specific data type, which data is being
used is very different. Seventeen methods are applied to tabular data, eleven
are applied to image data and nine are applied to text data. Only four
publications, Koh et al. 2017 [2], Ribeiro at al. 2016 [14] [8] and Sundararajan
et al. 2017 [15] include an application of all three data types.

Evaluation Technique Out of the 37 publications, only eleven include an
assessment of their tool to measure its performance. We identify two differ-
ent methods that are used: a baseline evaluation and a user interview. A
baseline evaluation is a quantitative evaluation technique, where one or more
indicators are measured for each framework which is then used to compare
them with each other. For instance, Plumb et al. 2018 [7] uses a self defined
causal local explanation metric to compare their framework to LIME. We
find ten publications that apply some sort of baseline evaluation. The sec-

9

Method Reference Scope Data Type Evaluation Technique

Activation maximization [12] Global Image
Counterfactual [16], [17] Local Tabular, Image
Feature importance [6] [18] Global,

Local
Image, Tabular

Fisher kernels [19] Local Image Baseline evaluation:
Fisher kernels compared
to Influence functions

Frequency map [11] Local Tabular Baseline evaluation:
MACEM compared to LIME
User interview:
MACEM compared to LIME

if-then rules [14], [20] Global,
Local

Image, Tabular, Text

Influence function [2] Local Image, Tabular, Text
LIME [8], [21], [14] Global,

Local
Image, Tabular, Text

LIME extension [22], [23], [10],
[24], [25], [9]

Local Image, Tabular, Text Baseline evaluation: SUP-LIME
compared to K-LIME;
SLIME compared to
positive saliency map;
DLIME compared to LIME

MAPLE [7] Global,
Local

Tabular Baseline evaluation: MAPLE
compared to LIME

Model distillation [13] Global Tabular
Parametric statistical tests [26] Local Tabular
Partial dependence plot [27] Global,

Local
Tabular

Prototype and criticism [28] Global,
Local

Tabular

Ranking models [29] Local Text
Relevance scores [30] Local Text Baseline evaluation: LRP

compared to TFIDF and uniform
Saliency map [31], [32] [33],

[15], [34], [35]
Local Tabular, Text, Image

Sensitive analysis [36] Global,
Local

Tabular

Shapley value [5], [18], [37],
[38], [39]

Local Tabular, Text, Image Baseline evaluation: true
shapley value, classical shapley
estimations, LIME and ES values
User interview: SHAP
compared to true shapley Value,
LIME and shapley sampling

Surrogate models [8], [40] [41] Global,
Local

Image, Tabular, Text

Visualisation [18] Global,
Local

Tabular

Table 1: Summary of the literature review

ond evaluation technique is a qualitative user interview, which for instance
in Dhurandhar et al. 2019 [11] ask two professionals to rate a mixed set of
interpretability framework outputs given to them. Out of the eleven pub-

10

lications who evaluate their framework, eight draw a comparison to LIME,
from which we can assume, that LIME constitutes a benchmark for inter-
pretability frameworks. However, when it comes to the evaluation of LIME
non of the publications about it [8][21][14] use evaluation techniques to as-
sess the frameworks performance and only little attention is given to LIME’s
tabular interpretation function. Towards this end, this thesis applies LIME
on tabular data and evaluates its performance in terms of comparability,
interpretability and usability.

11

3 The interpretation of image classification with
LIME

We choose an image classification model6 to explain the interpretability
framework LIME and its application on machine learning models, as us-
ing image data offers the advantage of being straight forward and easy to
comprehend. This kind of model categorizes an image based on the data it
has been trained on. We apply LIME on its output to better understand the
process. In the final part we analyse the result LIME presents us with.

The practical work described in this thesis is done in a jupyter environ-
ment7 and runs locally on a MacBook Mid 2014, with one 2,8 GHz Intel
Core i5 processor8, two central process units (CPU)9 and eight gigabytes of
random access memory (RAM)10.

3.1 What is LIME?
LIME is an open source framework, published by Ribeiro et al. in 2016 [8],
aimed to shed light on the decision-making process of any existing machine
learning model and therewith establish trust in their user. Local means that
the framework analyses is observation-specific. It does not give a general
explanation of why the model behaves in a certain way, but rather explains
how a specific observation is categorised. Interpretable stands for being able
to understand what a model does. In image classification it shows which
part of the picture it considered to make a prediction and when working with
tabular data it shows which features influence its decision. Model-Agnostic
means that it can be applied to any blackbox algorithm we know today or
that we might develop in the future. If the model is either a glasbox or not
is not taken into consideration as LIME treats every model like a blackbox.
Explanations are the output that the LIME framework produces. LIME was
released with three core functionalities: the image explainer interprets image
classification models, the text explainer provides insight into text trained
models11 and the tabular explainer, creates understanding of how features of
a tabular dataset are considered for the classification process12.

6
https://www.tensorflow.org/tutorials/keras/classification

7
https://jupyter.org/

8
https://ark.intel.com/content/www/us/en/ark/products/48496/intel-core-i5-760-

processor-8m-cache-2-80-ghz.html
9
https://www.lifewire.com/what-is-a-cpu-2618150

10
https://www.digitaltrends.com/computing/what-is-ram/

11
https://www.tensorflow.org/lite/models/text_classification/overview

12
https://towardsdatascience.com/pytorch-tabular-binary-classification-a0368da5bb89

12

3.2 Setup and application of the model
As the basis for our demonstration of LIME, we use a notebook provided by
one of the creators of LIME, Marco Ribeiro, on his GitHub account [42]. As a
machine learning model Inception_V313 a pre-trained model from the python
library keras [43] is used. Pre-trained means that we can download a ready to
use machine learning model and apply it on our data. Inception_V3 is owned
by Google Inc.14 and is a deep neural network that can be used for image
classification. It was pre-trained on one-thousand classes15 of ImageNet16,
an open source labeled image dataset that consists of over fourteen-million
images and over twenty-thousand classes. It is an ongoing project in which
developers label and add new images and classes to the dataset in an annual
competition called ImageNet large scale visual recognition challenge17.

For the image classification to work, we use the following libraries: Os
is a package that produces an operating system interface that enables us to
directly interact with our operating system. In our case we use it to import
the data from our directory. Keras is an easy to use API for deep learning18,
which is designed for fast prototyping and research, as it focuses on giving
a simple and consistent user experience irrespective of the algorithm you
want to use19. We import the entire keras library as well as packages from
it. As our model we use the keras version of Inception_V3 a convolutional
neural network20. keras.preprocessing21 is used to adjust images to make
them applicable to our process, the keras decode_predictions22 package for
classifying the model and the matplotlib.pyplot23 package is needed every
time we process our model. The numpy24 library is an essential package for
many kinds of computational work with python which we use to apply our
classification model.

We first call the inceptionV3 function on the inception_v3 package and
set it to inet_model. Then we define the transform_img_fn Listing 1 func-
tion which serves the following purposes: First, it processes the image to

13
https://keras.io/applications/#inceptionv3

14
https://www.fast.ai/2017/01/03/keras/

15
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

16
http://image-net.org/about-overview

17
http://image-net.org/challenges/LSVRC/2016/index

18
https://keras.io/

19
https://keras.io/why-use-keras/

20
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

21
https://keras.io/preprocessing/image/

22
decode_predictions vgg16

23
https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.html

24
https://numpy.org

13

category number category name probability
n02859443 boathouse 0.9577018
n09332890 lakeside 0.0033688135
n04238763 slide_rule 0.0007693328
n07715103 cauliflower 0.00064561074
n04590129 window_shade 0.00050171226

Table 2: Classification output of the first image

a form applicable to LIME which is 299 X 299 pixel and assigns it to the
variable img (line 5), then it transforms the image into an array, which is fur-
thermore preprocessed by the inc_net (line 8). Transform_img_fn returns
the output, stacked in vertical sequences, processed by the numpy vstack
function (line 10).

Listing 1: The image transformer
1 # Processes the picture to make it applicable
2 def transform_img_fn(path_list):
3 out = []
4 for img_path in path_list:
5 img = image.load_img(img_path, target_size=(299, 299))
6 x = image.img_to_array(img)
7 x = np.expand_dims(x, axis=0)
8 x = inc_net.preprocess_input(x)
9 out.append(x)

10 return np.vstack(out)

Application of the machine learning model We use our model to clas-
sify buildings. The ImageNet dataset contains the classes boathouse, church,
barn and lakeside amongst others, therefore our model can be tested to iden-
tify them. We examine its accuracy with two pictures both of them displaying
a boathouse and water. Based on the Cambridge dictionary definition of a
boathouse, it is "a small building at the side of a river or lake, in which boats
are kept" [44]. The examples are chosen based on this definition.

We load Figure 1 [45], a picture of the Stafford’s boatshouse into our
model using os.path.join which prints the output of the five highest rated
categories displayed in Table 2. The category boathouse is rated the most
likely class with 95.78% and the next possible category lakeside has a weight
of 0.34% which is therefore not considered likely anymore.

14

Figure 1: The first image example

3.3 Applying LIME on the classification output
Now we apply LIME on the machine learning output to understand the
model’s prediction. We define the explainer by loading and running the
LimeImageExplainer function, displayed in the first line of Listing 2. For it
to work, we change the parameter setting top_labels (line 5), as the default
value results in an error from 5 to 1000 labels, which is the number of all
classes the model contains. The %%time command (line 7) comes with python
and shows the processing time of a function, which in our case is ten minutes
and thirty-eight seconds.

Listing 2: The LIME image explainer
1 explainer = lime_image.LimeImageExplainer()
2

3 # Hide color is the color for a superpixel turned OFF.
Alternatively, if it is NONE, the superpixel will be replaced by
the average of its pixels

4

5 explanation = explainer.explain_instance(images[0],
inet_model.predict, top_labels=1000, hide_color=0,
num_samples=1000)

6

7 %%time #shows the processing time the function takes

15

Figure 2: The image processed by the model

In Figure 2 we display the first interpretation of LIME by applying the
explanation to produce the five most important parts of the image the
model bases its top classification on, in our case the boathouse. We can see
that the model considers exclusively the left side of the picture where the
building is, branches of the tree behind, as well as the buildings reflection in
the water, which tells us that a house and the nature around it are the main
indicators used in order to classify this image as a boathouse.

To display the whole picture, with the most important pixels coloured,
we set the parameter hide_rest=FALSE and positive_only=TRUE. The ef-
fect of the change in settings can be inspected in Figure 3. The fields that
contributed positively to the chosen label are displayed in green and those
influencing negatively toward the top prediction are displayed in red. As our
prediction has a weight of 95.78% no red spot can be identified.

In Figure 4 we display only features that have a weight of 25% or more
by including the parameter min_weight=0.25 in the function. In our case
the center of the building and its reflection are considered the strongest.
Therefore we can conclude that the model is primarily influenced by this
fraction of the picture. This specification helps us to identify more clearly
what factor the model is focused on. We then increase the min_weight
gradually until at 34% no superpixel is shown anymore.

16

Figure 3: The top five superpixel Figure 4: Pixel with �25% weight

Figure 5: The second image example

In order to draw a comparison we analyse a second example of a boathouse,
borrowed from Wikipedia’s definition of a boathouse [46]. Figure 5 displays
a house and a waterside, not unlike our first example. We apply our model
on it and get the results shown in Table 3: The category boathouse is rated
the most likely class, with 62.86%. The next possible category lakeside has a
likelihood of 21.61%, which is still considerably high, but the third category,
fountain, only reaches 0.34% and is therefore not considered likely anymore.

17

category number category name probability
n02859443 boathouse 0.62867475
n09332890 lakeside 0.21610458
n03388043 fountain 0.0033783945
n03874293 paddlewheel 0.0027901048
n02099712 labrador_retriever 0.00029043932

Table 3: Classification output of the second image

Figure 6: The top five superpixel Figure 7: The second prediction

Compared to the first image, we now have two options that are consid-
ered possible. To understand why the model regards this image differently
we make use of the LIMEImageExplainer. We look at which factors the
model regards differently and what led to a change from an unequivocal top
category in the first image to two highly rated categories in the second one.
We again apply the explanation on the image which results in Figure 6, to
see what differs from Figure 1, where the mode made a definite classification.
This time the model mainly considered the center of the picture, parts of the
roof and trees in the background, as well as the storage for a boat, something
very characteristic for a boathouse25.

Finally, we take a look at the analysis of the second highest rated predic-
tion, lakeside, with 21.61%. By including 106 in the explanation function
and changing positive_only from true to false we can view in Figure 7
the most positively influencing pixel for the second highest weighting cate-
gory, lakeside, in green and the most negatively influencing pixel in red. We

25
https://en.wikipedia.org/wiki/Boathouse#cite_note-Evesham-1

18

can see that not only the parts of the picture capturing the lake positively
contribute to this category, but also parts of the boathouse. This indicates,
that the image data the model has been trained with to classify a lakeside
displayed similar buildings, making it one of the primary characteristics of
this picture.

3.4 An evaluation of the LIME image explainer
LIME’s performance in interpreting images is very impressive as it makes the
model’s decision making process transparent for the user. LIME’s method
to generate superpixel, aggregated areas that have been judged alike by the
model and make them visible to the user, is an easy to comprehend solution.
Even in a case like Figure 5 which offers two potential answers, it illustrates
the factors considered clearly, enabling us to understand why one category
was chosen over the other. The available options to display only the relevant
pixel, colour them in red and green or only show superpixels of a certain
weight, help to get a more detailed insight into the classification process. All
in all, the LIMEImageexplainer helps to identify possible bias and thereby
establishes trust between the classification model and those that need to
interpret the result.

19

4 The classification of tabular data
In this chapter we form the basis to evaluate the LIMETabularExplainer.
We apply four classification models, the decision tree, the logistic regression,
the random forest and the extreme gradient boosting on tabular data and
analyse the output using the confusion matrix, accuracy score and receiver
operating characteristic curves.

4.1 Tabular data retrieval and pre-processing
For our tabular data analysis we use the Rain in Australia data-set from
Kaggle26. Before the algorithm is trained, we work through the different
variables step by step to fully understand their meaning. Then the depen-
dencies amongst each other are evaluated and those that could potentially
bias the models or have too many missing values are removed.

4.1.1 The setup

The implementation process is split into data processing, the setup of the
algorithm, the actual implementation and the application of LIME.

Data processing To load and process the data we make use of the pan-
das27 library. It is one of the most frequently used python libraries in the
field of data science, as it allows to import data into very well structured data
frames and adapt it to your needs. The numpy28 package is also a very pop-
ular python library, used for linear algebra and multidimensional containers.
In this thesis it is used to set up the confusion matrix.

Setup of the machine learning algorithm Before we can train our
model, we need the following: The OneHotEncoder29 function ensures that
the variable can be processed by the algorithm, by adding a dummy vari-
able to the data-frame for every category the variable contains. The
ColumnTransformer30 function allows us to process a single column or a
column subset independently.

26
https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

27
https://pandas.pydata.org/pandas-docs/stable/

28
https://numpy.org/doc/

29
https://bit.ly/2RnWZuK

30
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

20

To set up our models, the following packages are used: The
OneHotEncoder31 function makes a categorical variable process-able for the
algorithm by adding a dummy variable to the data-frame for every category
the variable contains. The ColumnTransformer32 function allows us to pro-
cess a single column or column subset independently. For establishing the
model we use the Pipeline33 package which simplifies our code by aggregat-
ing several steps and performing them in a sequence. The GridSearchCV34

function which combines a grid search35 with an estimator36, is applied to
tune our hyper-parameters. It allows us to set a range instead of a specific
value for a parameter and automatically picks the best performing one of all
training rounds. The scikit-learn train_test_split package37, is used to
separate our data-set into training and testing data.

The models To compare varying algorithms we apply the following meth-
ods: decision tree38, logistic regression39, random forest40 and XGBoost41

which are all part of the sklearn library42.

Interpretation To compare the performance of our models we use the
state of the art methods receiver operating characteristic curve43, classifica-
tion report44 and the accuracy package45. In the end, the
LimeTabularExplainer46 is used as an interpretability framework.

4.1.2 Description of the dataset

The Australia rain prediction dataset contains twenty-four features of which
seven are categorical, including the binary target variable and seventeen are

31
https://bit.ly/2RnWZuK

32
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

33
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

34
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

35
https://medium.com/datadriveninvestor/an-introduction-to-grid-search-ff57adcc0998

36
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

37
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

38
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

39
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

40
https://bit.ly/2RnWZuK

41
https://xgboost.readthedocs.io/en/latest/

42
https://scikit-learn.org/

43
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

44
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

45
https://bit.ly/2xtZ2XP

46
https://lime-ml.readthedocs.io/en/latest/lime.html

21

variable name sample input type non-null-values
Date 2008-12-03 categorical 142193
Location Albury categorical 142193
MinTemp* 13.4 numerical 141556
MaxTemp* 25.1 numerical 141871
Rainfall* 0.00 numerical 140787
Evaporation 23 numerical 81350
Sunshine 11 numerical 74377
WindGustDir* W categorical 132863
WindGustSpeed* 44.0 numerical 132923
WindDir9am* NW categorical 132180
WindDir3pm* W categorical 138415
WindSpeed9am* 25.0 numerical 140845
WindSpeed3pm* 8.0 numerical 139563
Humidity9am* 25.0 numerical 140419
Humidity3pm* 22.0 numerical 138583
Pressure9am* 1007.7 numerical 128179
Pressure3pm* 1007.1 numerical 128212
Cloud9am 2.0 numerical 88536
Cloud3pm 8.0 numerical 85099
Temp9am* 16.9 numerical 141289
Temp3pm* 21.8 numerical 139467
RainToday* Yes categorical 140787
RISK_MM 0.2 numerical 142193
RainTomorrow* No categorical 142193

Table 4: An overview of the datasets’ features

numerical. In total the file consists of 142,193 rows, taking about twenty-six
megabyte of disk-space. In Table 4 a summary of the dataset is given.

Categorical variables The categorical features, which are all in string
format, consist of Date, Location, WindGustDir, WindDir9am, WindDir3pm,
RainToday and the dependent variable RainTomorrow. The variable Date is
structured in the YYYY-MM-DD format and contains a timeframe between
1st of November 2007 to 25th of June 2017. Location includes the city the
observation has been recorded in, including fourty-nine cities in Australia,
but no coordinates or further areal separation. WindGustDir describes the
direction of the strongest wind gust, a wind stream that lasts several seconds
and exceeds a speed of twent-nine kilometers per hour. WindDir9am and

22

WindDir3pm both represent a cardinal point at the exact time. RainToday
is a boolean that is 1 if the rainfall (in mm) in the twenty-four hours before
9am exceeds 1mm. Otherwise it is set to 0. The target variable RainTomor-
row is also a boolean, either 0 for it is going to rain tomorrow or 1 if it is not
going to rain tomorrow.

Numerical variables MinTemp and MaxTemp represent the minimum
and maximum temperature degree at a given day and Temp9am as well as
Temp3pm the temperature of the given moment. Like all numerical variables,
they are in float format. Rainfall shows the amount of rain in millimeters
that has been measured. For Evaporation the class A pan evaporation47 is
measured, which is a method for measuring how much water vaporises on a
given day, strongly influenced by the amount of sunlight, temperature and
windspeed. WindGustSpeed captures the speed the strongest recorded gust
has reached and both WindSpeed9am and WindSpeed3pm records the actual
speed at the given point of time, respectively. RISK_MM is a calculation
of the expected rainfall of tomorrow, calculated by today’s values. It is used
to create the target variable RainTomorrow. Cloud9am and Cloud3pm are
measuring the fraction of sky obscured by clouds at the given time, respec-
tively. It is measured in oktas48, which are a unit of eigths. It records how
many eights of the sky are obscured by clouds. A 0 measure indicates com-
pletely clear sky whilst an 8 indicates that it is completely covered. The only
variables measured in percentage are Humidity9am and Humidity3pm. Pres-
sure9am and Pressure3pm each show the atmospheric pressure, measured in
hectopascal pressure unit49, reduced to the mean sea level.

The column non-null-values in Table 4 includes information from the
info function50 of the pandas library. It returns the format of the feature
as well as the number of non-null values , which vary from feature to fea-
ture. While some variables have <5% missing values (e.g. MinTemp, Max-
Temp,WindSpeed3pm), others miss over 40% (e.g. Cloud9am, Sunshine).

47
https://theconstructor.org/water-resources/evaporation-and-its-measurement/4575/

48
https://www.metoffice.gov.uk/weather/guides/observations/how-we-measure-cloud

49
https://www.sensorsone.com/hpa-hectopascal-pressure-unit/

50
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html

23

4.1.3 Processing the directions

In order to be able to work with the direction giving variables WindGustDir,
WindDir9am and WindDir3pm we have to convert the string to a float.
Prior to including the directional variables in our input data WindGustDir,
WindDir9am and WindDir3pm, the cardinal points have to be converted
to processable numbers. We therefore assign a number between 1 and 16 to
each of the possible directions, for example the direction North is represented
in the dataset by the letter N and is changed to 1. North-North-East was
represented by NNE and is replaced by the number 4. We replace the values
of all three features by using the pandas map function 51.

Converting binary variables from string to float In order to process
the binary variables RainToday and RainTomorrow, we convert them from
Yes/No to 1/0, using the pandas map function.

Dropping variables and missing values Considering the variables mean-
ing, we decide to exclude two from our analysis. Risk_MM shows how much
it will rain on the next day, making it highly predictive for our dependent
variable. The variable Date was excluded as a date has no influence on the
natural phenomenon of rain and does not have any effect on it, as it is a
generic measurement of our society to structure a time-span. Furthermore
Evaporation, Cloud3pm, Cloud9pm and Sunshine are dropped because they
have 40-50% missing values. To remove all of them, we use the pandas drop52

function. Furthermore, we have to get rid of missing values within the fea-
tures we decide to keep, for which we use the pandas dropna53 function.

After preprocessing In the end our data frame consists of seventeen fea-
tures, twelve numerical and five categorical, including the target variable, all
in a float format, which are marked with a * in Table 4. This results in a
total of 112.925 observations to train and test our model with.

4.2 Setup of the machine learning models
In order to make our model trainable, we need to preprocess our features fur-
ther. We use the ColumnTransformer function54 to process the features. By
using passthrough on the numerical variables it will leave them untouched.

51
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.map.html

52
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html

53
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

54
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

24

The categorical features instead are processed by the One-Hot-Encoder which
converts categorical variables into a form that can be used by a statistical
model. Instead of using a variable with several numbers representing cate-
gories, each variable is split into one variable per possible outcome, each of
them either being 1 if the category is true or 0 if this category is false.

We further build a pipeline object55, displayed in Listing 3, to apply
the preprocessor on the data and sequentially build our model based on
its structure. This enables us to perform a sequence of different transfor-
mations and to give each algorithm a customised setting while being able
to cross-validate each setting-combination during the training process. We
use the pipeline for different functions: Class_weight="balanced" is ap-
plied to the decision tree (line 4), the logistic regression (line 8) and the
random forest (line 12), to correct the unbalanced dataset and to train
the the models with an even amount of target variable outcomes. For
the XGBoost we apply scale_pos_weight=(1-y.mean()) which has the
same effect. Solver="liblinear", which we apply on the logistic regression
(line 8), is the recommended setting when working with binary classifica-
tion problems as it applies automatic parameter selection56 to the model.
The two parameters random_state and n_estimator guaranty consistency
for the logistic regression and the random forest, respectively. After setting
random_state=42 (line 8) the logistic regression always uses the same state
and when n_estimator=100 (line 12) is applied, the random forest produces
a constant number of trees, instead of constantly changing. The parameter
n_jobs does not influence the computation itself, but n_jobs=-1 (line 12 and
17) tells the CPU to use 100% of all available cores, reducing the processing
time.

Listing 3: The model pipeline
1 # Decision Tree
2 dt_model = Pipeline([("preprocessor", preprocessor),
3 ("model",

DecisionTreeClassifier(class_weight="balanced"))])
4

5 # Logistic Regression
6 lr_model = Pipeline([("preprocessor", preprocessor),
7 ("model", LogisticRegression(class_weight="balanced",

solver="liblinear", random_state=42))])
8

55
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

56
https://stackoverflow.com/questions/38640109/logistic-regression-python-solvers-

defintions

25

9 # Random Forest
10 rf_model = Pipeline([("preprocessor", preprocessor),
11 ("model",

RandomForestClassifier(class_weight="balanced",
n_estimators=100, n_jobs=-1))])

12

13 # XGBoost
14 xgb_model = Pipeline([("preprocessor", preprocessor),
15 # Add a scale_pos_weight to make it balanced
16 ("model", XGBClassifier(scale_pos_weight=(1 -

y.mean()), n_jobs=-1))])

The train_test_split57 function is used to break our data into different
parts, namely training and testing data. The training data consists of the
variable x_train, which contains 70% of the instances, excluding the target
variable and y_train only contains the target variable of the same instances
as x_train. The test data is separated into x_test and y_test, with the former
containing the other 30% of the data, including all variables except the target
variable, which again is extracted to the latter. For training our model with
the same target variable distribution as the dataset, we include stratify=y
in the train_test_split function, resulting in the same distribution of y in
the training and test data, respectively.

4.3 The application of machine learning models
In our experimental setting, we test several algorithms and interpret the dif-
ferences in the results. We start with a decision tree, based on the assessment
of Molnar [47] and Hara et al. [48] as it offers a simple and easy to inter-
pret solution, where you can go through each taken decision step by step
and therefore not necessarily need an explainable AI framework. We then
pick three state of the art solutions for classification tasks, logistic regression,
random forest and XGBoost which are all based on different mathematical
techniques: stacking, bagging and boosting58. This chapter gives more in-
sight into how the algorithms are applied and what steps for the analysis are
taken.

57
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection

.train_test_split.html
58

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-

c9214a10a205

26

Listing 4: The decision tree model
1 \lstset{floatplacement=tp}
2 #Optimizing the parameters by using cross validation
3 gs = GridSearchCV(dt_model, {"model__max_depth": [3, 5, 7],
4 "model__min_samples_split": [2, 5]},
5 n_jobs=-1, scoring="accuracy")
6

7 gs.fit(X_train, y_train)

4.3.1 The decision tree algorithm

A decision tree is a supervised learning method [49], which is used to pre-
dict an outcome by answering a set of questions and therefore coming to a
decision, based on the features it received as an input. These answers can be
manually traced from beginning to end and are therefore very interpretable
by nature. This high interpretability makes it a good benchmark for compar-
ison with blackbox models. Although we examine the decision tree in detail,
the other algorithms are analogous.

We train the decision tree using the GridSearchCV function, operating it
mostly on default settings, the code being displayed in Listing 4. The aspects
we alter are the model_max_depth (line 2), which represents how deep a tree
is allowed to grow. The deeper a tree becomes the more splits it has and
the more information it can capture. But it is also more likely to adapt
specifically to the training_data, losing the ability to predict other datasets,
a statistical phenomenon called overfitting59. We set it to [3, 5, 7] splits so
the grid search can single out the best one to use. Model_min_sample_split
(line 3) determines the minimum sample size required to split an internal
note, which is per default set to a sample size of 2 and we widen the spectrum
by adding 5. N_jobs=-1 (line 4) tells the CPU to use 100% of all available
cores, reducing the processing time. The parameter scoring="accuracy"
indicates, that the model’s goal is to maximise its accuracy. Lastly the fit
function (line 6) is used to train the model defined in the GridSearchCV.

The classification report The sklearn classification report, displayed in
Table 5, provides us with further insight into the performance of the model.
The precision describes how often the model was correct in classifying an
observation as positive. It is the result of the true positives, divided by the

59
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-

learning-algorithms/

27

target/metric precision recall f1-score support
not going to rain 0.91 0.81 0.86 26372
going to rain 0.53 0.73 0.61 7506
accuracy 0.79 33878
macro avg 0.72 0.77 0.74 33878
weighted avg 0.83 0.79 0.80 33878

Table 5: The decision tree classification report

sum of true positives and false positives, adding up to 91% for the outcome
that it is not going to rain and 53% for that it is going to rain. For the recall
measurement, the performance of the variables is more similar. It consists of
the true positives divided by the sum of true positives and false negatives,
81% and 73%, respectively. The f1-score tells us what percentage of positive
prediction is correct, including the recall and precision into its measurement.
The f1-score consists of two times the precision * recall divided by the sum
of precision and recall. The decision tree delivers a f1-score of 86% for that
it is not going to rain and 61% for it is going to rain. The column sup-
port is a count for the instances of the target variable, in the upper part of
the matrix for the outcome not going to rain and going to rain, in the lower
part it shows the total of 33878 observations that have been used for the test.

The bottom block of the classification report shows the accuracy
score and the macro and the weighted average of the three indicators above
plus the f1-score. The macro score represents the overall performance of the
indicator, meaning the average. The macro precision reaches 82%, the macro
recall 71% and the macro f1-score 74%. The weighted average is, as the name
indicates, the respective score times its number of instances, for example, the
0.85% weighted average precision result from the target variable not going to
rain, having a score of 91%, with 26372 observations and and 53% of target
variable going to rain with 7506 instances. Overall, the model scores highly
in most indicators, but seems to struggle with correctly predicting, as a pre-
cision of 53% and an f-1 score of 61% leave room for improvement. A more
detailed evaluation of classification report indicators, including a comparison
of all four models, is described in section 5.

The receiver operating characteristic curve Another state of the art
tool to measure the validity of classification results is the receiver operating
characteristic curves (ROC) [50]. As displayed in Figure 8, it is a graph

28

Figure 8: The decision tree ROC curve

showing two curves, the upper one is the ROC curve, posing a probability,
the lower one is the baseline, which separates the ROC and the area under
the curve (AUC), which is a measurement for separability. Similar to the
classification report, the ROC curve uses precision and recall for its
measurement but due to its graphical display curves of different models can
be compared visually to each other. The further to the upper left corner the
curve bends, the better the classification. The AUC measures the general
accuracy, meaning how well a model can differentiate between classes. For
the AUC the following rule holds true: the closer its value is to 1, the better
the model is able to correctly classify. If the value is 0.5 it means that the
model is not better than randomly guessing and a value of close to 0 means
that the model is doing the classification upside down 60. In the case of our
decision tree, the baseline performs with 0.85 on our test-data and the model
can therefore be interpreted as reliable.

4.3.2 The random forest algorithm

A random forest is an aggregation of various decision trees, calculating de-
cisions over and over again until a certain amount of sequences is calculated

60
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-

classification-in-python/ https://www.jstor.org/stable/2531595?seq=1

29

Listing 5: The random forest model
1 \lstset{floatplacement=tp}
2 gs = GridSearchCV(rf_model, {"model__max_depth": [10, 15],
3 "model__min_samples_split": [5, 10]},
4 n_jobs=-1, scoring="accuracy")
5

6 gs.fit(X_train, y_train)

[51]. Then the algorithm utilises the decision made by the majority which are
then used to build a model. The assumption is that each decision tree might
have its individual miscalculations, but a large number of trees will annul
each others errors. Therefore, a random forest is the statistical equivalent
to the wisdom of the crowd [52]. For our model, displayed in Listing 5, we
set the same parameters as those of the decision tree, except for increasing
the numbers of max_depth (line 1) to [10, 15] as the default allows them
to deepen until all leaves are pure, which might lead to overfitting61 and the
minimal_sample_split to [5, 10] as we want to give the GridSearchCV a
range of values to choose from. All other parameters stay unchanged.

The results In terms of accuracy the random forest reaches 79.97%. The
classification report, as displayed in Table 6, shows that the precision between
the two outcomes of RainTomorrow diverge quite heavily, with 92% and 53%
for it is not going to rain and it is going to rain, respectively. The recall of
82% and 74% is much closer and the f1-score again diverges, 86% and 62%
for it is not going to rain and it is going to rain, respectively. In terms of
macro average the precision, recall and f1-score reach 73%, 78% and 74%,
while the weighted average scores 83%, 80% and 81%, respectively.

The random forest ROC delivers a baseline performance of 86% on the
test data as can be seen in Figure 9.

61
https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-

forest-in-python-77bf308a9b76

30

target/metric precision recall f1-score support
not going to rain 0.92 0.81 0.86 26372
going to rain 0.53 0.75 0.62 7506
accuracy 0.80 33878
macro avg 0.72 0.78 0.74 33878
weighted avg 0.83 0.80 0.81 33878

Table 6: The random forest classification report

Figure 9: The random forest ROC curve

4.3.3 The logistic regression algorithm

The second model we use for comparison is the logistic regression. Due to it
being a regression, it is sometimes referred to as a glasbox model [47], like the
decision tree, and therefore easier to interpret than more complex models like
the XGBoost. To build the model we use the GridSearchCV function and
specify only certain parameters (see Listing 6). The first one, model__C, is a
regularizing parameter is used to avoid overfitting. As the default value is 1.0
and we want to give the GridSearchCV a range to experiment with, we add
1.3 and 1.5. N_jobs= -1, cv and scoring are the same as in the decision tree.

31

Listing 6: The logistic regression model
1 \lstset{floatplacement=tp}
2 gs = GridSearchCV(lr_model, {"model__C": [1, 1.3, 1.5]}, n_jobs=-1,

scoring="accuracy")
3 gs.fit(X_train, y_train)

target/metric precision recall f1-score support
not going to rain 0.92 0.80 0.86 26372
going to rain 0.52 0.77 0.62 7506
accuracy 0.79 33878
macro avg 0.72 0.79 0.74 33878
weighted avg 0.84 0.79 0.80 33878

Table 7: The logistic regression classification report

The results In terms of performance, the logistic regression delivers an
accuracy of 79%. The precision of the two depended variables, displayed in
the Table 7, appears to be mixed, 92% indicating it is not going to rain and
52% indicating it is going to rain. The recall results are almost identical with
80% and 77% and the f-1 scores are somewhere in the middle, with 86% and
62%, indicating it is not going to rain and it is going to rain, respectively.
The macro average returns 72% precision, 79% recall and 74% f1-score and
the weighted average returns 84%, 79% and 80% respectively.

The ROC curve, in Figure 10, reaches a value of 87% in its test run, which
is a positive indicator 62.

4.3.4 The extreme gradient boosting algorithm

The extreme gradient boosting algorithm (XGBoost) was developed by Tainqi
Chen [53] and belongs to the distributed machine learning community. The
algorithm is focused on computational speed and model performance which
are key factors when considering which model to use in the field of applied
machine learning. The XGBoost uses gradient boosted decision trees for its
calculations. Boosting is a technique where new models are added to correct
the errors made by previous models, based on the assumption, that a set of
models performs better than a single model. Models are added sequentially

62
https://machinelearningmastery.com/assessing-comparing-classifier-performance-roc-

curves-2/

32

Figure 10: The logistic regression ROC curve

until no further improvements can be made. The XGBoost has gained lots
of recognition over the last years as it has been used for a series of wins at
international data science competitions like Kaggle63 64.

As displayed in Listing 7, we set the default of model_max_depth to
[5, 10], with the intention to keep the maximum depth of trees in a
range which neither tends to overfit nor needs too much processing power65.
Min_child_weight is altered to control possible overfitting, as a high num-
ber prevents a model from learning relations which only exist in the training
data, however, if the number is too high it can lead to underfitting, therefore
we set it to [5, 10] as well66. Model__n_estimators represents the number
of gradient boosted trees we use, which results in the number of rounds we
process before choosing the best one. As this is one of the main influences
in terms of computing power, we pick [25], which is a quarter of the default

63
https://www.quora.com/What-machine-learning-approaches-have-won-most-Kaggle-

competitions
64

https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-

win-every-machine-learning-competition-ca8034c0b283
65

https://machinelearningmastery.com/tune-number-size-decision-trees-xgboost-

python/
66

https://medium.com/data-design/xgboost-hi-im-gamma-what-can-i-do-for-you-and-

the-tuning-of-regularization-a42ea17e6ab6

33

Listing 7: The XGBoost model
1 \lstset{floatplacement=tp}
2 gs = GridSearchCV(xgb_model, {"model__max_depth": [5, 10],
3 "model__min_child_weight": [5, 10],
4 "model__n_estimators": [25]},
5 n_jobs=-1, scoring="accuracy")
6

7 gs.fit(X_train, y_train)

target/metric precision recall f1-score support
not going to rain 0.86 0.96 0.91 26372
going to rain 0.79 0.46 0.58 7506
accuracy 0.85 33878
macro avg 0.82 0.71 0.74 33878
weighted avg 0.85 0.85 0.84 33878

Table 8: The XGBoost classification report

value [100], as we train the model on a local machine67. All other factors
stay equal to the settings of the previous models.

Â´

The results The results from the classification report, displayed in Table 8
are as followed: The precision reaches 86% and 79% percent for the depen-
dent variable 0 and 1, recall 96% and 46% and f1-score 91% and 58%. The
macro average resulted in 82%, 71% and 84% and the weighted average in
85%, 85% and 84%, respectively. The model achieves an overall accuracy of
85% on the testing data.

The ROC curve in Figure 11 runs the smoothest compared to the ROC
of the other models, with a result of 88%.

67
https://machinelearningmastery.com/tune-number-size-decision-trees-xgboost-

python/

34

Figure 11: The XGBoost ROC curve

35

5 Interpretation of the output and the
application of LIME

This chapter focuses on explaining the output presented in the previous sec-
tions and consists of three parts: in the first part we analyse the machine
learning results and compare the models’ performance, using the accuracy
score, the classification report and the ROC curve; In the second part we ap-
ply LIME on the tabular models and describe the output, while in the third
part we conduct a quantitative analysis of fifty aggregated LIME observations
to assess the models’ performance with LIME on a global level.

5.1 Analysis of the machine learning output
The logistic regression as well as the decision tree perform slightly worse than
the random forest in all performance indicators. Table 9 is an aggregation of
all conventional performance measures we use to evaluate our models. The
scores either refer to the target variable it is not going to rain (0) or it is
going to rain (1) as well as the weighted scores (w) and in terms of the ROC
the training baseline value (tr).

Overall it is notable that the performances of the decision tree, random
forest and logistic regression are very similar while the XGBoost performance
differs significantly.

In this comparison, the XGBoost delivers the highest values with a 85%
accuracy, weighted average scores of 85% precision, 85% recall as well as
84% f1-score. But it’s weak performance in classifying that it is going to
rain correctly, can be seen in a low recall (1) and f1-score (1) score with
46% and 58%, respectively. It is worth noting that the high difference in the
recall scores for the respective target variable might be caused by unbalanced
testing data, which is something we would like to further explore in future
work.

The logistic regression offers the highest recall (1), in 77% of the positive
observations it predicts correctly that it is going to rain, with a weighted
recall of 79%. In terms of f1-score (1) the logistic regression and the random
forest score equally 62% which is four percentage points higher than the
XGBoost with 58%.

Furthermore, comparing the ROC curves shows a similar performance of
the models, with the XGBoost scoring an 88% ROC baseline, the logistic
regression 87%, the random forest 86% and the decision tree 85%.

To summarize, the decision tree performs worst in all metrics. The ran-
dom forest and the logistic regression never differ more than two percentage

36

ac
cu

ra
cy

pr
ec

is
io

n
(0

)

pr
ec

is
io

n
(1

)

re
ca

ll
(0

)

re
ca

ll
(1

)

f1
-s

co
re

(0
)

f1
-s

co
re

(1
)

pr
ec

is
io

n
(w

)

re
ca

ll
(w

)

f1
-s

co
re

(w
)

R
O

C
-b

as
el

in
e

(t
r)

decision tree 0.79 0.91 0.53 0.81 0.73 0.86 0.61 0.83 0.79 0.80 0.85
random forest 0.80 0.92 0.53 0.81 0.75 0.86 0.62 0.83 0.80 0.81 0.86

logistic reg. 0.79 0.92 0.52 0.80 0.77 0.86 0.62 0.84 0.79 0.80 0.87
XGBoost 0.85 0.86 0.79 0.96 0.46 0.91 0.58 0.85 0.85 0.84 0.88

Table 9: A model comparison using conventional methods

points in any of the metrics and are therefore performing very similar. Only
the XGBoost outperforms the others in several metrics, but scores signifi-
cantly lower when it comes to predicting the outcome of a positive obser-
vation. To answer the question which model should be deployed therefore
requires the knowledge of which trade-off is preferred: a higher accuracy and
more accurate prediction of true negatives would stand in favor of the XG-
Boost and the need for a more accurate prediction of true positives would
favor the random forest or the logistic regression.

5.2 The application and evaluation of the LIME Tabu-
lar Explainer

After using conventional methods to analyse the models’ performance, we
now apply and interpret LIME to gain further insight into the decision mak-
ing process.

Set up of the explainer The main function LIME offers is called explainer
which enables us to call a specific observation and get an interpretation as
a result. Prior to being able to explain an observation, we need to convert
the output into a certain format, which is displayed in Listing 8. First, we
create a list of all possible categorical values per feature as they are necessary
for the explainer. Next, we use the convert_to_lime_format function[54]
adopted from Kevin Lemagnen’s Pycon presentation in 201968, as the one in-
cluded in the LIME documentation only works with older versions of Python.

68
https://speakerdeck.com/klemag/pycon-2019-introduction-to-model-interpretability-

in-python

37

The function converts all existing string variables to integers, so they can be
interpreted.

Listing 8: The convert to LIME function
1 # Converts data with categorical values as string to categorical

values with integers labels.
2 def convert_to_lime_format(X, categorical_names, col_names=None,

invert=False):
3

4

5 # If the data is not a dataframe, we need to be able to create one
6 if not isinstance(X, pd.DataFrame):
7 X_lime = pd.DataFrame(X, columns=col_names)
8 else:
9 X_lime = X.copy()

10

11 for k, v in categorical_names.items():
12 if not invert:
13 label_map = {
14 str_label: int_label for int_label, str_label in

enumerate(v)}
15

16 else:
17 label_map = {
18 int_label: str_label for int_label, str_label in

enumerate(v) }
19 X_lime.iloc[:, k] = X_lime.iloc[:, k].map(label_map)
20

21 return X_lime

The explainer itself is included in the LIME library and displayed in
Listing 9. We set all parameters manually, as the explainer does not possess
any default values. First, we call our now formatted dataset and set the mode
to classification. Then we give a list of all features in our dataset (line 3) and
with categorical_names=categorical_names (line 4) we specify which of
the variables are categorical. Categorical_features (line 5) list the index
of all features with a categorical type and discretize_continuous (line 6)
is a mathematical function that simply helps to produce a better output by
converting continuous attributes to nominal attributes. The final parameter,
random_state, brings consistency into the function, as if not specified it
always picks a different number whenever we reload the function.

38

Listing 9: The LIME tabular explainer
1 explainer = LimeTabularExplainer(convert_to_lime_format(X_train,

categorical_names).values,
2 mode="classification",
3 feature_names=X_train.columns.tolist(),
4 categorical_names=categorical_names,
5 categorical_features=categorical_names.keys(),
6 discretize_continuous=True,
7 random_state=42)

Explaining an observation We call one observation on which we apply
the interpretability framework and subsequently print the classification each
model gives for this instance as well as the true label.

We can now convert the output to the LIME format, saving it in the
observation variable before defining a standard predict function. The
custom_predict_proba function, displayed in Listing 10, is able to transform
very simple models but also more complex input. It converts the data so it
is applicable to the LIMETabularExplainer, which we carry out for every
model we wish to interpret. After that we can apply the LIME framework
to our classification models.

Listing 10: The predict_proba converter
1 # The custom_predict_proba function makes data applicable to the

respective model
2

3 def custom_predict_proba(X, model):
4 X_str = convert_to_lime_format(X, categorical_names,

col_names=X_train.columns, invert=True)
5 return model.predict_proba(X_str)
6

7 lr_predict_proba = partial(custom_predict_proba, model=lr_model)
8 dt_predict_proba = partial(custom_predict_proba, model=dt_model)
9 rf_predict_proba = partial(custom_predict_proba, model=rf_model)

10 xgb_predict_proba = partial(custom_predict_proba, model=xgb_model)

To create a LIME output, we use the logistic regression as an example as
shown in Listing 11. Therefore, we define the explanation as
explainer.explain_instance and include the observation we chose above,

39

adding the lr_predict_proba and five features as this shows us the factors
considered the most influential on predicting the target variable.

Listing 11: Calling the LIME output
1 # The explainer applied to the logistic regression
2

3 explanation = explainer.explain_instance(observation,
lr_predict_proba, num_features=5)

4

5 explanation.show_in_notebook(show_table=True, show_all=False)

Running the code presents us with the LIME output, displayed in Fig-
ure 12, consisting of three parts: the prediction probabilities on the left side,
the feature probabilities in the center and the feature-value table on the
right. The prediction probabilities graph shows the model’s decision on that
instance, meaning which outcome it predicts and the corresponding prob-
ability. In our example it predicts, that it is not going to rain with 83%
probability, represented by the blue bar with the number 0 and that it is go-
ing to rain with 17%, represented by the orange bar with the number 1. The
feature probabilities graph gives insight into how much a feature influences
the given decision. For this observation the variable WindGustSpeed is the
most influential factor and supports the prediction, that it is not going to
rain tomorrow. The second most important feature is Humidity3pm which
weights towards that it is going to rain tomorrow, represented by the number
1. In this case, we display the top five features in our output, but theoreti-
cally all the features could be listed that way, ordered by their importance.
The last graph is the feature-value table, which also sorts the features by
importance, but instead of showing their weight, is given the actual value
that this feature possesses in this observation. For example, the fifth feature,
MaxTemp, shows 21.50 in this table, representing 21.5 degrees Celsius, the
maximum temperature on the day of the observation. It is coloured blue, as
it is influencing the model’s decision towards no rain.

5.3 Evaluating the models on a global level
To analyse the LIME output on a more global level, we apply the framework
on fifty observations and aggregate the output in an excel file to compare
the graphs with each other. As we analyse four models, we end up with 200

40

Figure 12: Example LIME output using logistic regression

interpretations in total.

Feature occurrence and influence LIME allows us to look at individ-
ual features in more detail and evaluate their influence. In our analysis the
framework displays the top five features per observation resulting in 200 total
feature counts and 50 top positions per model. Out of this set, Humidity3pm
occurs most frequently, except for the XGBoost where it is ranked second
after Pressure9am. It appears 50 times in the analysis of the decision tree
and logistic regression, 42 times at the random forest and 48 times at the
XGBoost. Furthermore, Humidity3pm is not only the most frequent, but is
also considered the most important feature, as for the logistic regression it
is the most influential feature, meaning it is ranked number one, in all 50
cases and for the decision tree in 47 cases. In case of the random forest, its
prediction it is not going to rain is heavily influenced by Rainfall, as when-
ever it did not rain, it is ranked in first or second position, which happens in
22 and 11 cases, respectively. Nevertheless, Humidity3pm is also important
for the random forest and occurs in 21 cases on the first rank. In the XG-
Boost classification Humidity3pm is considered the most important feature
38 times.

The least considered features are WindGustDir, RainToday and Temp9am,
with an occurrence of five, seven and eight times, respectively, which are never
ranked within the first or second position.

Considering this values, we now know that Humidity3pm is highly pre-
dictive for our models, bringing us a step closer to developing a usable ap-
plication.

The extent of misclassification By displaying the intervals of its classi-
fication, LIME enables us to evaluate the accuracy of a single prediction. In
terms of a false assessment we calculate the absolute difference between the
probabilities assigned to the target variables, measured in percentage points.
This tells us by how much the prediction is wrong and results in another

41

indicator to assess the models. The false classifications are divided into two
categories: a wrong prediction with less than 20 percentage points of absolute
difference is called a close miss and a prediction with 20 percentage points
or over more absolute difference is called a far miss.

The analysis of all observations results in the following: the decision tree
classifies 12 out of 50 instances incorrectly, which are split evenly between
close and far misses. The average absolute difference of all wrong classifica-
tions is 23 percentage points. In terms of the amount of incorrect classifica-
tions the logistic regression performs better than the decision tree, with eight
wrong classifications, of which five are a close and three are a far miss. In ab-
solute difference the logistic regression performs slightly worse, with around
26 percentage points. The random forest misclassifies nine times, of which
six are close and three are far misses and gives us an average of 15 percentage
points. Lastly, the XGBoost predicts incorrectly only four times, one time
causing a close miss and three times a strong miss, resulting in around 38
percentage points absolute difference.

Considering the different evaluations we conducted, the XGBoost is su-
perior in the majority of cases. With the highest accuracy of 85%, weighted
classification report scores of 85% precision, 85% recall, 84% f1-score, a ROC-
test-baseline of 88% and the least amount of incorrect classifications, it de-
livers better performance than the other models.

42

6 A qualitative assessment of LIME
The assessment of LIME’s interpretability and usability is split into two
parts: firstly, we perform interviews to get an impression of how LIME is
interpreted by people who are not familiar with the concept of explainable
AI; Secondly, we apply a user experience evaluation framework in order to
perform a self assessment of LIME’s usability based on its criteria.

6.1 The interviews
We interviewed six people, equally split between male and female, three with
prior knowledge of machine learning and three with no prior knowledge. Non
of them were familiar with the concept of xAI before participating in the in-
terview. The participants were either academics or in the process of pursuing
a degree. In each interview we wanted to find out how interpretable the LIME
output is for a person who never worked with xAI before. An overview of
the interview results is displayed in Table 10.

The interview was split into two sections, each of them started with an
explanation from the interviewer. In the first part the interviewees were given
a quick introduction into the topic of the thesis, how to do rain prediction,
as well as a quick introduction into machine learning. Then they were shown
the first LIMETabularExplainer output graph Figure 13 and were asked to
assess it based on four questions.

When asking the participants to describe what they see when looking
at the LIME output, all interviewees expressed uncertainty about what the
illustrations show. All started with identifying the three graphs and tried to
make sense of the different numbers. Although a few participants struggled
with the prediction-probabilities and feature-value graph, every participant
had difficulties interpreting the feature probabilities as the numbers did not
seem to add up and there was too much information given in a badly struc-
tured way.

People without prior machine learning knowledge struggled to see the re-
lation between the prediction probabilities and the classification, but those
with prior knowledge in machine learning concluded, that there is a connec-
tion between the feature probabilities and the prediction probabilities graph.
Two concluded correctly, that the second smaller numbers on the central
graph are probabilities, as they are between 0 and 1 and influence the at-
tribute of the predictability.

When we asked if the participants understand "why the model made this
prediction, and if yes, how?", only one out of six answered correctly, that

43

Figure 13: Output of the first part

P
ar

ti
ci

pa
nt

M
L

kn
ow

le
dg

e

G
en

de
r

Il
lu

st
ra

ti
on

P
re

di
ct

io
n

R
at

in
g

pa
rt

I

U
nd

er
st

an
d

pa
rt

II

R
at

in
g

pa
rt

II

R
2

1 yes m yes yes 3 improved 8
2 no f no no 3 improved 6.5 x
3 no m no no 4 improved 7.5 x
4 yes m yes yes 5 improved 9.5
5 no f no no 4 improved 7.5 x
6 yes f no no 3 improved 7 x

Table 10: Participants’ understanding of the LIME output

the classification is determined by the numbers of the feature probabilities
graph.

On a scale from 1 to 10, with 1 being the worst and 10 the best, the inter-
pretability of the LIME output was rated with an average of 3.66. The rating
between the subgroups differed only slightly, the participants without prior
knowledge gave an average of 3.33 and the participants with prior knowledge
4.0, respectively.

The second section started with a short explanation of each graph of the
LIME output as well as an explanation of the meaning of the r-squared value
at the bottom of the output. Then they were shown Figure 14 and were
asked four more questions.

As soon as the participants were given an explanation for each graph
the answers improved significantly. Four understood the graphs correctly,
but were still uncertain where the probabilities of the prediction probabili-
ties graph resulted from. Two of the participants with a machine learning

44

Figure 14: Output of the second part

background understood the framework after the explanation. Another four
pointed out that the r-squared scores of both models were low, which re-
sulted in concerns about the reliability of the prediction. Nevertheless, the
explainability of the graph after the explanation improved significantly, to
an average of 7.66, while participants with prior machine learning knowledge
again rated it slightly higher with an average of 8.16 and the other group on
average one point lower.

Additionally, five out of six participants stated that the central graph
was not very interpretable and three mentioned that they found the choice
of colours disturbing. Furthermore, five interviewees suggested a legend,
titles or a short explanation should be included in the output visualisation
to improve its interpretability.

To sum up, while one can assume that a framework can not be completely
understood without any further explanation, the interview results show that
the illustration needs some clear improvements to become understandable to
a person not familiar with xAI. While the participants with a background in
machine learning understood the method quicker, they still struggled severely
with LIME’s usability.

6.2 Self assessment of the usability
To assess LIME’s user experience, we adopt the definition of usability pro-
posed by the International Organisation for Standardisation (ISO)69 in their
ISO 9241-11 1998 report [55]. In the report usability is defined as the "ex-
tent to which a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a spec-
ified context of use" [55]. As this definition is too broad to be directly applied
in our evaluation context, we improve its applicability by including ’Usability
Meanings and Interpretations in ISO Standards’ [56] by Abran et al. 2003

69
https://www.iso.org/home.html

45

and ’New ISO Standards for Usability, Usability Reports and Usability Mea-
sures’ [57] by Bevan et al. 2016, which both interpret and extend the ISO
definition.

6.2.1 Effectiveness

In [57], Bevan et al. state that "effectiveness has been associated with com-
pleting a task completely and accurately, but it is also important to take
account of the potential negative consequences if the task is not achieved cor-
rectly". From this we extract the factors measure of completion, measure of
accuracy and negative consequences to rate effectiveness.

Furthermore, in [56] the question "How well do users achieve their goal
using the system?" is used to rate the overall interpretability. When we
apply the inputs of Bevan et al. and Abrans et al. to LIME, we end up with
following questions which can be used to assess effectiveness:

Q1) How effective does LIME achieve model interpretability?

(a) How complete is the explanation on a local level?
(b) How complete is the explanation on a global level?
(c) Could accurate results be misinterpreted?
(d) What negative consequences arise from a misinterpretation?

(a) LIME is a local explainability framework, therefore it calculates the
influence of every feature with the associated feature importance on a lo-
cal level, which helps to make a model’s classification more understandable.
Nevertheless, the connection between the prediction probabilities and the
feature probability graph is incomplete as currently only the feature impor-
tance score is displayed, however these scores do not add up to the prediction
probabilities. As displayed in Figure 15, the feature Humidity3pm with a fea-
ture probabilities score of 0.31 exceeds the total prediction probability of 0.21
that it is going to rain, while the overall classification was in favor of no rain.
Many cases show contradictions that can only be explained by assuming,
that the displayed prediction probabilities are not the sum of the feature
probabilities, but the result of another calculation not obvious to us as a
user.

46

Figure 15: Example of a LIME output

(b) While LIME processes locally, the author has specified the framework’s
purpose for comparing different model performances with each other [58]
which is only possible on a global level. However, the LIMETabularExplainer
performs much poorer globally, as it does not include a function or interface
to allow a global evaluation. Thus, we have to extract several observation
outputs manually and analyse them in an Excel file, as we did in the global
analysis of section 5. We either recommend implementing performance indi-
cators that allow a global comparison with other models or add a function
to extract the local outputs of several random observations as a spreadsheet,
so the user can calculate indicators necessary for a global comparison them-
selves.

(c) The interpretations of the local predictions appear to be accurate. But
we see a risk for misinterpretation of the tabular explainer, as no comprehen-
sive explanation of it has been published yet [59]. Therefore, we have to rely
on third party explanations like online articles70 71 or talks on YouTube72 73.

(d) In case of a misinterpretation of the LIME evaluation the severity of
the negative consequences depends on the use-case. For example the im-
plication of a wrongly deployed automated defense system as presented in
’DARPA’s Explainable Artificial Intelligence Program’ [60] and our rain pre-
diction model for Australia, differ. In our case a mistake in the interpretation
could lead to a faulty feature importance and therefore a wrong rain forecast,
in DARPA’s case, a biased object classification by an automated defense sys-
tems puts lives at risks.

70
https://medium.com/analytics-vidhya/explain-your-model-with-lime-5a1a5867b423

71
https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-

explanations-lime/
72

https://www.youtube.com/watch?v=CY3t11vuuOM
73

https://www.youtube.com/watch?v=C80SQe16Rao

47

To conclude, an effective model interpretation with LIME can be achieved,
as we can assess our models’ performances on a local as well as on a global
level. However, the process to extract the output, which is necessary to get
a complete global understanding, is tedious and requires additional software.
Therefore the framework is only effective to some extend.

6.2.2 Efficiency

To evaluate efficiency Bevan et al. [57] identify the following factors: task
time, time efficiency, cost-effectiveness, productive time ratio, unnecessary
actions and fatigue. We aggregate them to a list with mutually exclusive
components and conclude with the question raised by Abran et al. "What
resources are consumed in order to achieve the goal?" [56].

Q2) What resources are consumed in order to achieve interpretability?

(a) How much time does it take to use LIME?
(b) What other costs are involved?
(c) Does this process cause fatigue?

(a) Both, the time to set up LIME as well as the time to analyse the
output play a role in this context. The setup works well, however the
LIMETabularExplainer setup documentation, which is provided by the au-
thor, is depreciated as it relates to several old packages. Therefore, the initial
process of applying the original notebook and trying to find workarounds con-
sumed a lot of time. Additionally, the analysis of the LIME output took a
considerable amount of time, as the documentation of the graphs is non-
transparent as stated in the effectiveness evaluation. On the up-side, the
time it takes to compute and display an observation is minimal.

(b) As LIME is an open source tool, no licensing costs are involved and
also the publications, documents and videos to understand the tool are free
to use.

(c) To apply LIME only on a few observations is a quick process and there-
fore not costly from a performance perspective. For the global interpretation
however it took hours of repetitive manual copying and pasting LIME out-
put from the notebook into an Excel file which was a tedious process. As

48

no benchmark on the number of observations necessary to evaluate models
globally in the documentation and publications about LIME is given, we had
no indicator about how many outputs would be sufficient.

While LIME is an open source software, the application of it comes at
a cost. A significant amount of time is necessary to make use of the frame-
work. A more detailed documentation, guideline and explanation of the
output would improve the efficiency. Especially providing a benchmark of
how many observations are necessary to conduct the global analysis would
safe the user time and effort.

6.2.3 Satisfaction

Satisfaction is the least standardised of the three parameters as it is highly
dependent on the user and use-case [57]. Based on Bevan et al. satisfaction
aims to take "positive attitudes, emotions and/or comfort resulting from use
of a system, product or service" [57] into account. The question Abran et
al. raise to assess satisfaction is "How well does the user feel about the use of
the system?" [56], which we include in our analysis. Combining both ideas
we finalise the third and last factor:

Q3) How satisfying is the application of LIME?

(a) Do we have a positive or negative attitude towards the tool?
(b) What emotions arise from using it?
(c) How satisfying is the final result?

(a) At the start of the implementation our attitude was very positive, as
LIME’s original introduction and publication was very promising in a sense
that it helps to interpret and trust a model’s prediction. During the setup our
attitude deteriorated due to a lack of documentation and support which posed
an even bigger problem during the analysis. LIME gives insight into a model’s
processes, but here again it takes a lot of effort to get a clear understanding
of the framework, which has a negative influence on our attitude. Naturally,
once one has learned how to apply and interpret LIME, the process is a much
more pleasant one.

(b) The lack of a clear and explicit guideline makes understanding LIME
a frustrating process. However, reaching the point of a better overall un-

49

derstanding of our models raises positive feelings. Especially LIME’s short
processing time to produce the graphs makes it easy to evaluate several in-
stances in a row, which leads to a very pleasant user experience.

(c) The output of the LIMETabularExplainer unquestionably helps to un-
derstand the model’s classification process, as it offers insights conventional
methods can not provide, which causes satisfaction. However, this satisfac-
tion could be increased by eliminating doubt about the relationships between
the local indicators and offering a global analysis.

When applying LIME for the first time the framework created some frus-
tration and uncertainty. Although it is clear that there is still room for im-
provement, the framework enables model interpretability which is the desired
outcome. Therefore we can express our overall satisfaction of the application
of LIME.

50

7 Conclusion & Future Work
In this chapter we outline how this thesis accomplished to assess LIME’s
suitability for the interpretation of tabular machine learning model and point
out what additional research could be conducted in this field.

7.1 Conclusion
To gain experience with LIME we first applied the LIMEImageExplainer to
an image classification model, as the setup and analysis of this function is very
well documented. We then began the assessment of LIME’s tabular interpre-
tation function, by pre-processing a tabular dataset and applying four state
of the art machine learning algorithms, namely decision tree, logistic regres-
sion, random forest and XGBoost on it. We first compared their performance
using the classification report and the receiver operating characteristics curve
and found that a decision with respect to which model performs best could
not be made confidently as we lacked insight into the process. Subsequently
we applied the LIMETabularExplainer and analysed single observations on a
local level and conducted a global evaluation of the four models. As a result,
we established that the XGBoost had a superior performance in the majority
of cases. Furthermore, we conducted a qualitative analysis of LIME utilizing
interviews to assess it’s interpretability and developed a usability framework
to evaluate our experience using LIME. The interviewees mainly identified
the LIMETabularExplainer output to be rather confusing as it lacked an
easy to understand explanation of how to read it. Our self assessment, which
was conducted according to ISO’s user experience definition, identified weak-
nesses in LIME’s application, especially as it lacks an extensive and updated
documentation on how to apply the framework, which made the process
rather frustrating. Overall, we conclude that while LIME helps to increase
interpretability of a model processing tabular data, its usability, especially
when conducting a global interpretation, can be improved in various ways.

7.2 Future Work
To assess LIME’s interpretability of tabular models further, we suggest to
repeat the quantitative evaluation several times, selecting different features
to train and test our model with, and analyse the difference in feature im-
portance with LIME to get further insight into the model’s process. In terms
of a qualitative assessment we suggest to evaluate the improvement in user
experience by changing the way the LIME output is presented by includ-
ing a legend explaining the different output graphs or changing the feature

51

probability to display the actual influence of a feature on the prediction.
Furthermore, an extensive comparison of model agnostic local interpretabil-
ity frameworks could be conducted, using our user experience framework to
assess them.

52

References
[1] P. McCorduck, M. Minsky, O. G. Selfridge, and H. A. Simon,

“History of artificial intelligence,” in Proceedings of the 5th International
Joint Conference on Artificial Intelligence. Cambridge, MA, USA,
August 22-25, 1977, 1977, pp. 951–954. [Online]. Available: http:
//ijcai.org/Proceedings/77-2/Papers/083.pdf

[2] P. W. Koh and P. Liang, “Understanding black-box predictions via in-
fluence functions,” 2017.

[3] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards con-
fident, interpretable and robust deep learning,” 2018.

[4] M. Hind, D. Wei, M. Campbell, N. C. F. Codella, A. Dhurandhar,
A. MojsiloviÄ‡, K. N. Ramamurthy, and K. R. Varshney, “Ted: Teaching
ai to explain its decisions,” 2018.

[5] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” 2017.

[6] J. Lei, M. GâTMSell, A. Rinaldo, R. J. Tibshirani, and L. Wasser-
man, “Distribution-free predictive inference for regression,” Journal of
the American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
2018.

[7] G. Plumb, D. Molitor, and A. S. Talwalkar, “Model agnostic supervised
local explanations,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 2515–2524.

[8] M. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?":
Explaining the predictions of any classifier,” in In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery
and data mining, 02 2016, pp. 97–101.

[9] S. Mishra, B. L. Sturm, and S. Dixon, “Local interpretable model-
agnostic explanations for music content analysis,” in ISMIR, 2017.

[10] L. Hu, J. Chen, V. N. Nair, and A. Sudjianto, “Locally interpretable
models and effects based on supervised partitioning (lime-sup),” arXiv
preprint arXiv:1806.00663, 2018.

[11] A. Dhurandhar, T. Pedapati, A. Balakrishnan, P.-Y. Chen, K. Shan-
mugam, and R. Puri, “Model agnostic contrastive explanations for struc-
tured data,” arXiv preprint arXiv:1906.00117, 2019.

53

[12] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Syn-
thesizing the preferred inputs for neurons in neural networks via deep
generator networks,” in Advances in neural information processing sys-
tems, 2016, pp. 3387–3395.

[13] S. Tan, R. Caruana, G. Hooker, and Y. Lou, “Detecting bias in
black-box models using transparent model distillation,” arXiv preprint
arXiv:1710.06169, 2017.

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, “Nothing else matters:
model-agnostic explanations by identifying prediction invariance,” arXiv
preprint arXiv:1611.05817, 2016.

[15] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70. JMLR. org, 2017, pp. 3319–3328.

[16] A.-H. Karimi, G. Barthe, B. Belle, and I. Valera, “Model-agnostic
counterfactual explanations for consequential decisions,” arXiv preprint
arXiv:1905.11190, 2019.

[17] S. Sharma, J. Henderson, and J. Ghosh, “Certifai: Counterfactual ex-
planations for robustness, transparency, interpretability, and fairness of
artificial intelligence models,” arXiv preprint arXiv:1905.07857, 2019.

[18] G. Casalicchio, C. Molnar, and B. Bischl, “Visualizing the feature impor-
tance for black box models,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2018, pp.
655–670.

[19] R. Khanna, B. Kim, J. Ghosh, and O. Koyejo, “Interpreting black box
predictions using fisher kernels,” arXiv preprint arXiv:1810.10118, 2018.

[20] N. Puri, P. Gupta, P. Agarwal, S. Verma, and B. Krishnamurthy,
“Magix: Model agnostic globally interpretable explanations,” arXiv
preprint arXiv:1706.07160, 2017.

[21] G. J. Katuwal and R. Chen, “Machine learning model interpretability
for precision medicine,” arXiv preprint arXiv:1610.09045, 2016.

[22] J. Singh and A. Anand, “Exs: Explainable search using local model ag-
nostic interpretability,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, 2019, pp. 770–773.

54

[23] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and
F. Giannotti, “Local rule-based explanations of black box decision sys-
tems,” arXiv preprint arXiv:1805.10820, 2018.

[24] M. R. Zafar and N. M. Khan, “Dlime: a deterministic local interpretable
model-agnostic explanations approach for computer-aided diagnosis sys-
tems,” arXiv preprint arXiv:1906.10263, 2019.

[25] T. Peltola, “Local interpretable model-agnostic explanations of bayesian
predictive models via kullback-leibler projections,” arXiv preprint
arXiv:1810.02678, 2018.

[26] S. García, A. Fernández, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: accuracy and interpretability,” Soft Computing, vol. 13, no. 10,
p. 959, 2009.

[27] D. P. Green and H. L. Kern, “Modeling heterogeneous treatment effects
in large-scale experiments using bayesian additive regression trees,” in
The annual summer meeting of the society of political methodology, 2010.

[28] J. Elith, J. R. Leathwick, and T. Hastie, “A working guide to boosted
regression trees,” Journal of Animal Ecology, vol. 77, no. 4, pp. 802–813,
2008.

[29] J. Singh and A. Anand, “Model agnostic interpretability of rankers via
intent modelling,” in Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 2020, pp. 618–628.

[30] L. Arras, F. Horn, G. Montavon, K.-R. Müller, and W. Samek, “" what
is relevant in a text document?": An interpretable machine learning
approach,” PloS one, vol. 12, no. 8, 2017.

[31] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. MÃžller, “How to explain individual classification decisions,”
Journal of Machine Learning Research, vol. 11, no. Jun, pp. 1803–1831,
2010.

[32] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[33] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE

55

conference on computer vision and pattern recognition, 2016, pp. 2921–
2929.

[34] R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes
by meaningful perturbation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3429–3437.

[35] P. Dabkowski and Y. Gal, “Real time image saliency for black box classi-
fiers,” in Advances in Neural Information Processing Systems, 2017, pp.
6967–6976.

[36] P. Cortez and M. J. Embrechts, “Opening black box data mining models
using sensitivity analysis,” in 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM). IEEE, 2011, pp. 341–348.

[37] S. Lundberg and S.-I. Lee, “An unexpected unity among methods for
interpreting model predictions,” arXiv preprint arXiv:1611.07478, 2016.

[38] J. Chen, L. Song, M. J. Wainwright, and M. I. Jordan, “L-shapley and
c-shapley: Efficient model interpretation for structured data,” arXiv
preprint arXiv:1808.02610, 2018.

[39] C. Frye, I. Feige, and C. Rowat, “Asymmetric shapley values: incorporat-
ing causal knowledge into model-agnostic explainability,” arXiv preprint
arXiv:1910.06358, 2019.

[40] O. Bastani, C. Kim, and H. Bastani, “Interpretability via model extrac-
tion,” arXiv preprint arXiv:1706.09773, 2017.

[41] J. J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K. N. Ramamurthy,
“Treeview: Peeking into deep neural networks via feature-space parti-
tioning,” arXiv preprint arXiv:1611.07429, 2016.

[42] M. Ribeiro, “Tutorial - image classification
keras,” accessed: 2020-04-18. [Online]. Avail-
able: https://github.com/marcotcr/lime/blob/master/doc/notebooks/
Tutorial%20-%20Image%20Classification%20Keras.ipynb

[43] F. Chollet, “Tutorial - image classification keras,” accessed: 2020-04-18.
[Online]. Available: https://keras.io/getting_started/intro_to_keras_
for_engineers/

[44] “Wikipedia,” accessed: 2020-04-18. [Online]. Available: https:
//dictionary.cambridge.org/de/worterbuch/englisch/boathouse

56

[45] aaronburden, “Alanson,” Oct 2018. [Online]. Available: https:
//unsplash.com/photos/KyWTf39MX6U

[46] MWanner, “Wikipedia,” https://creativecommons.org/licenses/by-
sa/3.0/, Oct 2007. [Online]. Available: https://en.wikipedia.org/
wiki/Boathouse#/media/File:Topridge_Boathouse.jpg

[47] C. Molnar, Interpretable Machine Learning, 1st ed. Christop Molnar,
2020, https://christophm.github.io/interpretable-ml-book/.

[48] S. Hara and K. Hayashi, “Making tree ensembles interpretable: A
bayesian model selection approach,” 2016.

[49] J. E. T. Akinsola, “Supervised machine learning algorithms: Classifica-
tion and comparison,” International Journal of Computer Trends and
Technology (IJCTT), vol. 48, pp. 128 – 138, 06 2017.

[50] D. L. Streiner and J. Cairney, “What’s under the roc? an introduction
to receiver operating characteristics curves,” The Canadian Journal
of Psychiatry, vol. 52, no. 2, pp. 121–128, 2007. [Online]. Available:
https://doi.org/10.1177/070674370705200210

[51] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[52] J. Surowiecki, The Wisdom of Crowds: Why the Many are Smarter than
the Few. Little Brown, 2004.

[53] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” CoRR, vol. abs/1603.02754, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02754

[54] K. Lemagnen, “helpers.py,” https://github.com/charlespwd/
project-titlehttps://github.com/klemag/PyconUS_2019-model-
interpretability-tutorial/blob/master/helpers.py, 2019.

[55] I. O. for Standardisation, “Iso 9241-11:1998(en) ergonomic requirements
for office work with visual display terminals (vdts) â” part 11: Guidance
on usability,” 1998.

[56] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and
interpretations in iso standards,” Software Quality Journal, vol. 11, pp.
325–338, 11 2003.

57

[57] N. Bevan, J. Carter, J. Earthy, T. Geis, and S. Harker, “New iso stan-
dards for usability, usability reports and usability measures,” vol. 9731,
07 2016, pp. 268–278.

[58] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-agnostic interpretabil-
ity of machine learning,” arXiv preprint arXiv:1606.05386, 2016.

[59] M. T. Ribeiro, “Lime tabular package,” 2016. [Online]. Avail-
able: https://lime-ml.readthedocs.io/en/latest/lime.html#module-
lime.lime_tabular

[60] D. Gunning and D. Aha, “Darpa’s explainable artificial intelligence
(xai) program,” pp. 44–58, Jun 2019. [Online]. Available: https:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2850

58

